A Protocol for Isolation, Purification, Characterization, and Functional Dissection of Exosomes

Extracellular vesicles (EVs) are membrane-enclosed vesicles released by cells. They carry proteins, nucleic acids, and metabolites which can be transferred to a recipient cell, locally or at a distance, to elicit a functional response. Since their discovery over 30 years ago, the functional repertoire of EVs in both physiological (e.g., organ morphogenesis, embryo implantation) and pathological (e.g., cancer, neurodegeneration) conditions has cemented their crucial role in intercellular communication. Moreover, because the cargo encapsulated within circulating EVs remains protected from degradation, their diagnostic as well as therapeutic (such as drug delivery tool) applications have garnered vested interest. Global efforts have been made to purify EV subtypes from biological fluids and in vitro cell culture media using a variety of strategies and techniques, with a major focus on EVs of endocytic origin called exosomes (30–150 nm in size). Given that the secretome comprises of soluble secreted proteins, protein aggregates, RNA granules, and EV subtypes (such as exosomes, shed microvesicles, apoptotic bodies), it is imperative to purify exosomes to homogeneity if we are to perform biochemical and biophysical characterization and, importantly, functional dissection. Besides understanding the composition of EV subtypes, defining molecular bias of how they reprogram target cells also remains of paramount importance in this area of active research. Here, we outline a systematic “how to” protocol (along with useful insights/tips) to obtain highly purified exosomes and perform their biophysical and biochemical characterization. This protocol employs a mass spectrometry-based proteomics approach to characterize the protein composition of exosomes. We also provide insights on different isolation strategies and their usefulness in various downstream applications. We outline protocols for lipophilic labeling of exosomes to study uptake by a recipient cell, investigating cellular reprogramming using proteomics and studying functional response to exosomes in the Transwell-Matrigel™ Invasion assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 139.09 Price includes VAT (France)

Softcover Book EUR 174.06 Price includes VAT (France)

Hardcover Book EUR 242.64 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Exomeres: A New Member of Extracellular Vesicles Family

Chapter © 2021

Global trend in exosome isolation and application: an update concept in management of diseases

Article 11 May 2023

Current knowledge on exosome biogenesis and release

Article Open access 21 July 2017

References

  1. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228. https://doi.org/10.1038/nrm.2017.125ArticleCASPubMedGoogle Scholar
  2. Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17. https://doi.org/10.1038/s41556-018-0250-9ArticleCASPubMedGoogle Scholar
  3. Bidarimath M, Khalaj K, Kridli RT, Kan FWK, Koti M, Tayade C (2017) Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus-endometrial cross-talk. Sci Rep 7:40476–40476. https://doi.org/10.1038/srep40476ArticleCASPubMedPubMed CentralGoogle Scholar
  4. Zhang X, Hubal MJ, Kraus VB (2020) Immune cell extracellular vesicles and their mitochondrial content decline with ageing. Immun Ageing 17(1):1. https://doi.org/10.1186/s12979-019-0172-9ArticleCASPubMedPubMed CentralGoogle Scholar
  5. Evans J, Rai A, Nguyen HPT, Poh QH, Elglass K, Simpson RJ, Salamonsen LA, Greening DW (2019) Human endometrial extracellular vesicles functionally prepare human trophectoderm model for implantation: understanding bidirectional maternal-embryo communication. Proteomics. https://doi.org/10.1002/pmic.201800423
  6. Suwakulsiri W, Rai A, Xu R, Chen M, Greening DW, Simpson RJ (2019) Proteomic profiling reveals key cancer progression modulators in shed microvesicles released from isogenic human primary and metastatic colorectal cancer cell lines. Biochim Biophys Acta 1867(12). https://doi.org/10.1016/j.bbapap.2018.11.008
  7. Rai A, Greening DW, Chen M, Xu R, Ji H, Simpson RJ (2019) Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics 19(8):1800148. https://doi.org/10.1002/pmic.201800148ArticleCASGoogle Scholar
  8. Nolte-‘t Hoen E, Cremer T, Gallo RC, Margolis LB (2016) Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci U S A 113(33):9155–9161. https://doi.org/10.1073/pnas.1605146113ArticleCASPubMedPubMed CentralGoogle Scholar
  9. Yuan Z, Petree JR, Lee FE-H, Fan X, Salaita K, Guidot DM, Sadikot RT (2019) Macrophages exposed to HIV viral protein disrupt lung epithelial cell integrity and mitochondrial bioenergetics via exosomal microRNA shuttling. Cell Death Dis 10(8):580–580. https://doi.org/10.1038/s41419-019-1803-yArticleCASPubMedPubMed CentralGoogle Scholar
  10. Cheng Y, Schorey JS (2019) Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep 20(3):e46613. https://doi.org/10.15252/embr.201846613ArticleCASPubMedPubMed CentralGoogle Scholar
  11. Johnson TB, Mach C, Grove R, Kelly R, Van Cott K, Blum P (2018) Secretion and fusion of biogeochemically active archaeal membrane vesicles. Geobiology 16(6):659–673. https://doi.org/10.1111/gbi.12306ArticleCASPubMedGoogle Scholar
  12. Schatz D, Rosenwasser S, Malitsky S, Wolf SG, Feldmesser E, Vardi A (2017) Communication via extracellular vesicles enhances viral infection of a cosmopolitan alga. Nat Microbiol 2(11):1485–1492. https://doi.org/10.1038/s41564-017-0024-3ArticleCASPubMedGoogle Scholar
  13. Lin W-C, Tsai C-Y, Huang J-M, Wu S-R, Chu LJ, Huang K-Y (2019) Quantitative proteomic analysis and functional characterization of Acanthamoeba castellanii exosome-like vesicles. Parasit Vectors 12(1):467–467. https://doi.org/10.1186/s13071-019-3725-zArticlePubMedPubMed CentralGoogle Scholar
  14. Atayde VD, da Silva Lira Filho A, Chaparro V, Zimmermann A, Martel C, Jaramillo M, Olivier M (2019) Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat Microbiol 4(4):714–723. https://doi.org/10.1038/s41564-018-0352-yArticleCASPubMedGoogle Scholar
  15. Zhao K, Bleackley M, Chisanga D, Gangoda L, Fonseka P, Liem M, Kalra H, Al Saffar H, Keerthikumar S, Ang C-S, Adda CG, Jiang L, Yap K, Poon IK, Lock P, Bulone V, Anderson M, Mathivanan S (2019) Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Commun Biol 2:305. https://doi.org/10.1038/s42003-019-0538-8ArticleCASPubMedPubMed CentralGoogle Scholar
  16. Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, Bernhardt J, Mitchell KF, Heiss C, Azadi P, Mitchell A, Andes DR (2018) Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol 16(10):e2006872. https://doi.org/10.1371/journal.pbio.2006872ArticleCASPubMedPubMed CentralGoogle Scholar
  17. Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J, Deng Z, Luo C, Sundaram K, Sriwastva MK, Zhang L, Hsieh M, Reiman R, Haribabu B, Yan J, Jala VR, Miller DM, Van Keuren-Jensen K, Merchant ML, McClain CJ, Park JW, Egilmez NK, Zhang H-G (2018) Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 24(5):637–652.e638. https://doi.org/10.1016/j.chom.2018.10.001ArticleCASPubMedPubMed CentralGoogle Scholar
  18. Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ (2013) Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics 12(3):587–598. https://doi.org/10.1074/mcp.M112.021303ArticleCASPubMedGoogle Scholar
  19. Morello M, Minciacchi VR, de Candia P, Yang J, Posadas E, Kim H, Griffiths D, Bhowmick N, Chung LW, Gandellini P, Freeman MR, Demichelis F, Di Vizio D (2013) Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 12(22):3526–3536. https://doi.org/10.4161/cc.26539ArticleCASPubMedPubMed CentralGoogle Scholar
  20. Mangeot PE, Dollet S, Girard M, Ciancia C, Joly S, Peschanski M, Lotteau V (2011) Protein transfer into human cells by VSV-G-induced nanovesicles. Mol Ther 19(9):1656–1666. https://doi.org/10.1038/mt.2011.138ArticleCASPubMedPubMed CentralGoogle Scholar
  21. Greening DW, Simpson RJ (2018) Understanding extracellular vesicle diversity – current status. Expert Rev Proteomics 15(11):887–910. https://doi.org/10.1080/14789450.2018.1537788ArticleCASPubMedGoogle Scholar
  22. Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ (2018) Extracellular vesicles in cancer – implications for future improvements in cancer care. Nat Rev Clin Oncol 15(10):617–638. https://doi.org/10.1038/s41571-018-0036-9ArticleCASPubMedGoogle Scholar
  23. Greening DW, Xu R, Gopal SK, Rai A, Simpson RJ (2017) Proteomic insights into extracellular vesicle biology – defining exosomes and shed microvesicles. Expert Rev Proteomics 14(1):69–95. https://doi.org/10.1080/14789450.2017.1260450ArticleCASPubMedGoogle Scholar
  24. Harding C, Stahl P (1983) Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem Biophys Res Commun 113(2):650–658 ArticleCASPubMedGoogle Scholar
  25. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978 ArticleCASPubMedGoogle Scholar
  26. Valencia K, Luis-Ravelo D, Bovy N, Anton I, Martinez-Canarias S, Zandueta C, Ormazabal C, Struman I, Tabruyn S, Rebmann V, De Las RJ, Guruceaga E, Bandres E, Lecanda F (2014) miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol 8(3):689–703. https://doi.org/10.1016/j.molonc.2014.01.012ArticleCASPubMedPubMed CentralGoogle Scholar
  27. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841(1):108–120. https://doi.org/10.1016/j.bbalip.2013.10.004ArticleCASPubMedGoogle Scholar
  28. Mahaweni NM, Kaijen-Lambers ME, Dekkers J, Aerts JG, Hegmans JP (2013) Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma. J Extracell Vesicles:2. https://doi.org/10.3402/jev.v2i0.22492
  29. El Andaloussi S, Lakhal S, Mager I, Wood MJ (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65(3):391–397. https://doi.org/10.1016/j.addr.2012.08.008ArticleCASPubMedGoogle Scholar
  30. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles – endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846(1):75–87. https://doi.org/10.1016/j.bbcan.2014.04.005ArticleCASPubMedGoogle Scholar
  31. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q, Evans R, Fissell WH, Patton JG, Rome LH, Burnette DT, Coffey RJ (2019) Reassessment of exosome composition. Cell 177(2):428–445.e418. https://doi.org/10.1016/j.cell.2019.02.029ArticleCASPubMedPubMed CentralGoogle Scholar
  32. Larios J, Mercier V, Roux A, Gruenberg J (2020) ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J Cell Biol 219(3). https://doi.org/10.1083/jcb.201904113
  33. Wu D, Yan J, Shen X, Sun Y, Thulin M, Cai Y, Wik L, Shen Q, Oelrich J, Qian X, Dubois KL, Ronquist KG, Nilsson M, Landegren U, Kamali-Moghaddam M (2019) Profiling surface proteins on individual exosomes using a proximity barcoding assay. Nat Commun 10(1):3854. https://doi.org/10.1038/s41467-019-11486-1ArticleCASPubMedPubMed CentralGoogle Scholar
  34. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H, Man Q, Zhong W, Antelo LF, Wu B, Xiong X, Liu X, Guan L, Li T, Liu S, Yang R, Lu Y, Dong L, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y, Kim J, Chen YH, Dong H, Zhao Y, Karakousis GC, Mitchell TC, Schuchter LM, Herlyn M, Wherry EJ, Xu X, Guo W (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386. https://doi.org/10.1038/s41586-018-0392-8ArticleCASPubMedPubMed CentralGoogle Scholar
  35. Rodrigues G, Hoshino A, Kenific CM, Matei IR, Steiner L, Freitas D, Kim HS, Oxley PR, Scandariato I, Casanova-Salas I, Dai J, Badwe CR, Gril B, Tesic Mark M, Dill BD, Molina H, Zhang H, Benito-Martin A, Bojmar L, Ararso Y, Offer K, LaPlant Q, Buehring W, Wang H, Jiang X, Lu TM, Liu Y, Sabari JK, Shin SJ, Narula N, Ginter PS, Rajasekhar VK, Healey JH, Meylan E, Costa-Silva B, Wang SE, Rafii S, Altorki NK, Rudin CM, Jones DR, Steeg PS, Peinado H, Ghajar CM, Bromberg J, de Sousa M, Pisapia D, Lyden D (2019) Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol 21(11):1403–1412. https://doi.org/10.1038/s41556-019-0404-4ArticleCASPubMedPubMed CentralGoogle Scholar
  36. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, Fang J, Rampersaud S, Hoshino A, Matei I, Kenific CM, Nakajima M, Mutvei AP, Sansone P, Buehring W, Wang H, Jimenez JP, Cohen-Gould L, Paknejad N, Brendel M, Manova-Todorova K, Magalhaes A, Ferreira JA, Osorio H, Silva AM, Massey A, Cubillos-Ruiz JR, Galletti G, Giannakakou P, Cuervo AM, Blenis J, Schwartz R, Brady MS, Peinado H, Bromberg J, Matsui H, Reis CA, Lyden D (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20(3):332–343. https://doi.org/10.1038/s41556-018-0040-4ArticleCASPubMedPubMed CentralGoogle Scholar
  37. Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, Stepanova A, Iommarini L, Mastroleo C, Daly L, Galkin A, Thakur BK, Soplop N, Uryu K, Hoshino A, Norton L, Bonafe M, Cricca M, Gasparre G, Lyden D, Bromberg J (2017) Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A 114(43):E9066–E9075. https://doi.org/10.1073/pnas.1704862114ArticleCASPubMedPubMed CentralGoogle Scholar
  38. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. https://doi.org/10.1038/nature15756ArticleCASPubMedPubMed CentralGoogle Scholar
  39. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, Garcia-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. https://doi.org/10.1038/ncb3169ArticleCASPubMedPubMed CentralGoogle Scholar
  40. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. https://doi.org/10.1038/nm.2753ArticleCASPubMedPubMed CentralGoogle Scholar
  41. Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126(4):1152–1162. https://doi.org/10.1172/JCI81129ArticlePubMedPubMed CentralGoogle Scholar
  42. Tkach M, Kowal J, Théry C (2018) Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond Ser B Biol Sci 373(1737):20160479. https://doi.org/10.1098/rstb.2016.0479ArticleCASGoogle Scholar
  43. Xu R, Greening DW, Rai A, Ji H, Simpson RJ (2015) Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods 87:11–25. https://doi.org/10.1016/j.ymeth.2015.04.008ArticleCASPubMedGoogle Scholar
  44. Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ (2015) A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 1295:179–209 ArticleCASPubMedGoogle Scholar
  45. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901ArticleCASPubMedGoogle Scholar
  46. Schroder M, Schafer R, Friedl P (1997) Spectrophotometric determination of iodixanol in subcellular fractions of mammalian cells. Anal Biochem 244(1):174–176. https://doi.org/10.1006/abio.1996.9861ArticleCASPubMedGoogle Scholar
  47. Linares R, Tan S, Gounou C, Arraud N, Brisson AR (2015) High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles 4:29509. https://doi.org/10.3402/jev.v4.29509ArticleCASPubMedGoogle Scholar
  48. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56(2):293–304. https://doi.org/10.1016/j.ymeth.2012.01.002ArticleCASPubMedGoogle Scholar
  49. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. https://doi.org/10.1038/nprot.2007.261ArticleCASPubMedGoogle Scholar
  50. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. https://doi.org/10.1038/nbt.1511ArticleCASPubMedGoogle Scholar
  51. Ramus C, Hovasse A, Marcellin M, Hesse AM, Mouton-Barbosa E, Bouyssie D, Vaca S, Carapito C, Chaoui K, Bruley C, Garin J, Cianferani S, Ferro M, Van Dorssaeler A, Burlet-Schiltz O, Schaeffer C, Coute Y, Gonzalez de Peredo A (2016) Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset. J Proteome 132:51–62. https://doi.org/10.1016/j.jprot.2015.11.011ArticleCASGoogle Scholar
  52. Hakkinen J, Vincic G, Mansson O, Warell K, Levander F (2009) The proteios software environment: an extensible multiuser platform for management and analysis of proteomics data. J Proteome Res 8(6):3037–3043. https://doi.org/10.1021/pr900189cArticleCASPubMedGoogle Scholar
  53. Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342. https://doi.org/10.1002/rcm.1196ArticleCASPubMedGoogle Scholar
  54. Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS – an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163. https://doi.org/10.1186/1471-2105-9-163ArticleCASPubMedPubMed CentralGoogle Scholar
  55. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198. https://doi.org/10.1093/nar/gkz369ArticleCASPubMedPubMed CentralGoogle Scholar
  56. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303ArticleCASPubMedPubMed CentralGoogle Scholar
  57. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131ArticleCASPubMedGoogle Scholar
  58. Kornilov R, Puhka M, Mannerstrom B, Hiidenmaa H, Peltoniemi H, Siljander P, Seppanen-Kaijansinkko R, Kaur S (2018) Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. J Extracell Vesicles 7(1):1422674. https://doi.org/10.1080/20013078.2017.1422674ArticleCASPubMedPubMed CentralGoogle Scholar
  59. Shelke GV, Lasser C, Gho YS, Lotvall J (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 3. https://doi.org/10.3402/jev.v3.24783
  60. Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3 22. https://doi.org/10.1002/0471143030.cb0322s30
  61. Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2004) Cell viability assays. In: Sittampalam GS, Grossman A, Brimacombe K et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD Google Scholar
  62. Mitchell JP, Court J, Mason MD, Tabi Z, Clayton A (2008) Increased exosome production from tumour cell cultures using the Integra CELLine Culture System. J Immunol Methods 335(1–2):98–105. https://doi.org/10.1016/j.jim.2008.03.001ArticleCASPubMedGoogle Scholar
  63. Guerreiro EM, Vestad B, Steffensen LA, Aass HCD, Saeed M, Ovstebo R, Costea DE, Galtung HK, Soland TM (2018) Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One 13(9):e0204276. https://doi.org/10.1371/journal.pone.0204276ArticleCASPubMedPubMed CentralGoogle Scholar
  64. Palviainen M, Saari H, Karkkainen O, Pekkinen J, Auriola S, Yliperttula M, Puhka M, Hanhineva K, Siljander PR (2019) Metabolic signature of extracellular vesicles depends on the cell culture conditions. J Extracell Vesicles 8(1):1596669. https://doi.org/10.1080/20013078.2019.1596669ArticleCASPubMedPubMed CentralGoogle Scholar
  65. Steinberg TH, Lauber WM, Berggren K, Kemper C, Yue S, Patton WF (2000) Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution. Electrophoresis 21(3):497–508. https://doi.org/10.1002/(SICI)1522-2683(20000201)21:33.0.CO;2-IArticleCASPubMedGoogle Scholar
  66. White IR, Pickford R, Wood J, Skehel JM, Gangadharan B, Cutler P (2004) A statistical comparison of silver and SYPRO Ruby staining for proteomic analysis. Electrophoresis 25(17):3048–3054. https://doi.org/10.1002/elps.200405947ArticleCASPubMedGoogle Scholar
  67. Tauro BJ, Mathias RA, Greening DW, Gopal SK, Ji H, Kapp EA, Coleman BM, Hill AF, Kusebauch U, Hallows JL, Shteynberg D, Moritz RL, Zhu HJ, Simpson RJ (2013) Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol Cell Proteomics 12(8):2148–2159. https://doi.org/10.1074/mcp.M112.027086ArticleCASPubMedPubMed CentralGoogle Scholar
  68. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51. https://doi.org/10.1016/j.tcb.2008.11.003ArticleCASPubMedGoogle Scholar
  69. Xu R, Simpson RJ, Greening DW (2017) A protocol for isolation and proteomic characterization of distinct extracellular vesicle subtypes by sequential centrifugal ultrafiltration. Methods Mol Biol 1545:91–116. https://doi.org/10.1007/978-1-4939-6728-5_7ArticleCASPubMedGoogle Scholar
  70. Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C, Mathivanan S, Zhao W, Xue Y, Xu T, Zhu HJ, Simpson RJ (2013) Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics 13(10–11):1672–1686. https://doi.org/10.1002/pmic.201200562ArticleCASPubMedGoogle Scholar
  71. Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C (2008) Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J Immunol Methods 338(1–2):21–30. https://doi.org/10.1016/j.jim.2008.07.007ArticleCASPubMedGoogle Scholar
  72. Chen M, Xu R, Ji H, Greening DW, Rai A, Izumikawa K, Ishikawa H, Takahashi N, Simpson RJ (2016) Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep 6:38397. https://doi.org/10.1038/srep38397ArticleCASPubMedPubMed CentralGoogle Scholar
  73. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, Giebel B (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87(1):146–150. https://doi.org/10.1016/j.colsurfb.2011.05.013ArticleCASPubMedGoogle Scholar
  74. Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9(2):197–208. https://doi.org/10.1074/mcp.M900152-MCP200ArticleCASPubMedGoogle Scholar
  75. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180(11):7249–7258 ArticleCASPubMedGoogle Scholar
  76. Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, Nakashima H, Nakamura M, Kuroki S, Tanaka M, Katano M (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25(6A):3703–3707 CASPubMedGoogle Scholar
  77. Coren LV, Shatzer T, Ott DE (2008) CD45 immunoaffinity depletion of vesicles from Jurkat T cells demonstrates that exosomes contain CD45: no evidence for a distinct exosome/HIV-1 budding pathway. Retrovirology 5:64. https://doi.org/10.1186/1742-4690-5-64ArticleCASPubMedPubMed CentralGoogle Scholar
  78. Grigorieff N, Harrison SC (2011) Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. Curr Opin Struct Biol 21(2):265–273. https://doi.org/10.1016/j.sbi.2011.01.008ArticleCASPubMedPubMed CentralGoogle Scholar
  79. Koning RI, Koster AJ (2009) Cryo-electron tomography in biology and medicine. Ann Anat 191(5):427–445. https://doi.org/10.1016/j.aanat.2009.04.003ArticlePubMedGoogle Scholar
  80. Tatischeff I, Larquet E, Falcon-Perez JM, Turpin PY, Kruglik SG (2012) Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles 1. https://doi.org/10.3402/jev.v1i0.19179
  81. Greening DW, Nguyen HP, Elgass K, Simpson RJ, Salamonsen LA (2016) Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biol Reprod 94(2):38. https://doi.org/10.1095/biolreprod.115.134890ArticleCASPubMedGoogle Scholar
  82. Suttapitugsakul S, Xiao H, Smeekens J, Wu R (2017) Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics. Mol BioSyst 13(12):2574–2582. https://doi.org/10.1039/c7mb00393eArticleCASPubMedPubMed CentralGoogle Scholar
  83. Tsiatsiani L, Heck AJ (2015) Proteomics beyond trypsin. FEBS J 282(14):2612–2626. https://doi.org/10.1111/febs.13287ArticleCASPubMedGoogle Scholar
  84. Wu Z, Huang J, Huang J, Li Q, Zhang X (2018) Lys-C/Arg-C, a more specific and efficient digestion approach for proteomics studies. Anal Chem 90(16):9700–9707. https://doi.org/10.1021/acs.analchem.8b02448ArticleCASPubMedGoogle Scholar
  85. Tyanova S, Cox J (2018) Perseus: a bioinformatics platform for integrative analysis of proteomics data in cancer research. Methods Mol Biol 1711:133–148. https://doi.org/10.1007/978-1-4939-7493-1_7ArticleCASPubMedGoogle Scholar
  86. Xu R, Greening DW, Chen M, Rai A, Ji H, Takahashi N, Simpson RJ (2019) Surfaceome of exosomes secreted from the colorectal cancer cell line SW480: peripheral and integral membrane proteins analyzed by proteolysis and TX114. Proteomics 19(8):1700453. https://doi.org/10.1002/pmic.201700453ArticleCASGoogle Scholar
  87. Wallace PK, Tario JD Jr, Fisher JL, Wallace SS, Ernstoff MS, Muirhead KA (2008) Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A 73(11):1019–1034. https://doi.org/10.1002/cyto.a.20619ArticlePubMedGoogle Scholar
  88. Skardelly M, Gaber K, Burdack S, Scheidt F, Hilbig H, Boltze J, Forschler A, Schwarz S, Schwarz J, Meixensberger J, Schuhmann MU (2011) Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. J Neurotrauma 28(3):401–414. https://doi.org/10.1089/neu.2010.1526ArticlePubMedGoogle Scholar
  89. Nowacki M, Nazarewski L, Pokrywczynska M, Kloskowski T, Tyloch D, Pietkun K, Jundzill A, Rasmus M, Warda K, Gagat M, Grzanka A, Bodnar M, Marszalek A, Krawczyk M, Habib SL, Drewa T (2015) Long-term influence of bone marrow-derived mesenchymal stem cells on liver ischemia-reperfusion injury in a rat model. Ann Transplant 20:132–140. https://doi.org/10.12659/aot.892364ArticleCASPubMedGoogle Scholar
  90. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5):675–687. https://doi.org/10.1111/j.1600-0854.2010.01041.xArticleCASPubMedGoogle Scholar
  91. Ofir-Birin Y, Abou Karam P, Rudik A, Giladi T, Porat Z, Regev-Rudzki N (2018) Monitoring extracellular vesicle cargo active uptake by imaging flow cytometry. Front Immunol 9(1011). https://doi.org/10.3389/fimmu.2018.01011
  92. Bryzgunova OE, Zaripov MM, Skvortsova TE, Lekchnov EA, Grigor’eva AE, Zaporozhchenko IA, Morozkin ES, Ryabchikova EI, Yurchenko YB, Voitsitskiy VE, Laktionov PP (2016) Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS One 11(6):e0157566. https://doi.org/10.1371/journal.pone.0157566ArticleCASPubMedPubMed CentralGoogle Scholar
  93. Campoy I, Lanau L, Altadill T, Sequeiros T, Cabrera S, Cubo-Abert M, Pérez-Benavente A, Garcia A, Borrós S, Santamaria A, Ponce J, Matias-Guiu X, Reventós J, Gil-Moreno A, Rigau M, Colas E (2016) Exosome-like vesicles in uterine aspirates: a comparison of ultracentrifugation-based isolation protocols. J Transl Med 14(1):180. https://doi.org/10.1186/s12967-016-0935-4ArticleCASPubMedPubMed CentralGoogle Scholar
  94. Pospichalova V, Svoboda J, Dave Z, Kotrbova A, Kaiser K, Klemova D, Ilkovics L, Hampl A, Crha I, Jandakova E, Minar L, Weinberger V, Bryja V (2015) Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles 4:25530. https://doi.org/10.3402/jev.v4.25530ArticlePubMedGoogle Scholar
  95. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C (2009) ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 19(22):1875–1885. https://doi.org/10.1016/j.cub.2009.09.059ArticleCASPubMedPubMed CentralGoogle Scholar
  96. Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, Kuo WP (2012) Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol 3:162. https://doi.org/10.3389/fphys.2012.00162ArticleCASPubMedPubMed CentralGoogle Scholar
  97. Abramowicz A, Widlaka P, Pietrowska M (2016) Proteomic analysis of exosomal cargo: the challenge of high purity vesicle isolation. Mol BioSyst 12(5):1407–1419. https://doi.org/10.1039/C6MB00082GArticleCASPubMedGoogle Scholar
  98. Livshits MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE, Generozov EV, Govorun VM (2015) Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep:5. https://doi.org/10.1038/srep17319
  99. Webber J, Clayton A (2013) How pure are your vesicles? J Extracell Vesicles 2. https://doi.org/10.3402/jev.v3402i3400.19861
  100. Ford T, Graham J, Rickwood D (1994) Iodixanol: a nonionic iso-osmotic centrifugation medium for the formation of self-generated gradients. Anal Biochem 220(2):360–366. https://doi.org/10.1006/abio.1994.1350ArticleCASPubMedGoogle Scholar
  101. Dettenhofer M, Yu XF (1999) Highly purified human immunodeficiency virus type 1 reveals a virtual absence of Vif in virions. J Virol 73(2):1460–1467 ArticleCASPubMedPubMed CentralGoogle Scholar
  102. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Thery C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 113(8):E968–E977. https://doi.org/10.1073/pnas.1521230113ArticleCASPubMedPubMed CentralGoogle Scholar
  103. Willms E, Johansson HJ, Mager I, Lee Y, Blomberg KE, Sadik M, Alaarg A, Smith CI, Lehtio J, El Andaloussi S, Wood MJ, Vader P (2016) Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep 6:22519. https://doi.org/10.1038/srep22519ArticleCASPubMedPubMed CentralGoogle Scholar
  104. Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, Li G (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16(4):782–790. https://doi.org/10.1038/mt.2008.1ArticleCASPubMedGoogle Scholar
  105. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S, Vimond N, Peguillet I, Thery C, Lacroix L, Zoernig I, Dhodapkar K, Dhodapkar M, Viaud S, Soria JC, Reiners KS, Pogge von Strandmann E, Vely F, Rusakiewicz S, Eggermont A, Pitt JM, Zitvogel L, Chaput N (2016) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Onco Targets Ther 5(4):e1071008. https://doi.org/10.1080/2162402X.2015.1071008ArticleCASGoogle Scholar
  106. Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA (2009) Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69(2):159–167. https://doi.org/10.1002/pros.20860ArticlePubMedGoogle Scholar
  107. Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland R (2014) Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Extracell Vesicles 3. https://doi.org/10.3402/jev.v3.23262
  108. Sharma P, Ludwig S, Muller L, Hong CS, Kirkwood JM, Ferrone S, Whiteside TL (2018) Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles 7(1):1435138. https://doi.org/10.1080/20013078.2018.1435138ArticleCASPubMedPubMed CentralGoogle Scholar
  109. Ghosh A, Davey M, Chute IC, Griffiths SG, Lewis S, Chacko S, Barnett D, Crapoulet N, Fournier S, Joy A, Caissie MC, Ferguson AD, Daigle M, Meli MV, Lewis SM, Ouellette RJ (2014) Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One 9(10):e110443. https://doi.org/10.1371/journal.pone.0110443ArticleCASPubMedPubMed CentralGoogle Scholar
  110. Atai NA, Balaj L, van Veen H, Breakefield XO, Jarzyna PA, Van Noorden CJ, Skog J, Maguire CA (2013) Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol 115(3):343–351. https://doi.org/10.1007/s11060-013-1235-yArticleCASPubMedGoogle Scholar
  111. Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M (2013) Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A 110(43):17380–17385. https://doi.org/10.1073/pnas.1304266110ArticlePubMedPubMed CentralGoogle Scholar
  112. Balaj L, Atai NA, Chen W, Mu D, Tannous BA, Breakefield XO, Skog J, Maguire CA (2015) Heparin affinity purification of extracellular vesicles. Sci Rep 5:10266. https://doi.org/10.1038/srep10266ArticleCASPubMedPubMed CentralGoogle Scholar
  113. Yoo CE, Kim G, Kim M, Park D, Kang HJ, Lee M, Huh N (2012) A direct extraction method for microRNAs from exosomes captured by immunoaffinity beads. Anal Biochem 431(2):96–98. https://doi.org/10.1016/j.ab.2012.09.008ArticleCASPubMedGoogle Scholar
  114. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, Newman GR, Jasani B (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247(1–2):163–174 ArticleCASPubMedGoogle Scholar
  115. Keryer-Bibens C, Pioche-Durieu C, Villemant C, Souquere S, Nishi N, Hirashima M, Middeldorp J, Busson P (2006) Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 6:283. https://doi.org/10.1186/1471-2407-6-283ArticleCASPubMedPubMed CentralGoogle Scholar
  116. Mercier SK, Donaghy H, Botting RA, Turville SG, Harman AN, Nasr N, Ji H, Kusebauch U, Mendoza L, Shteynberg D, Sandgren K, Simpson RJ, Moritz RL, Cunningham AL (2013) The microvesicle component of HIV-1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes. PLoS Pathog 9(10):e1003700. https://doi.org/10.1371/journal.ppat.1003700ArticleCASPubMedPubMed CentralGoogle Scholar
  117. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887. https://doi.org/10.1093/intimm/dxh267ArticleCASPubMedGoogle Scholar
  118. Oksvold MP, Kullmann A, Forfang L, Kierulf B, Li M, Brech A, Vlassov AV, Smeland EB, Neurauter A, Pedersen KW (2014) Expression of B-cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells. Clin Ther 36(6):847–862.e841. https://doi.org/10.1016/j.clinthera.2014.05.010ArticleCASPubMedGoogle Scholar
  119. Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103(3):738–743. https://doi.org/10.1073/pnas.0507995103ArticleCASPubMedPubMed CentralGoogle Scholar
  120. Ueda K, Ishikawa N, Tatsuguchi A, Saichi N, Fujii R, Nakagawa H (2014) Antibody-coupled monolithic silica microtips for highthroughput molecular profiling of circulating exosomes. Sci Rep 4:6232. https://doi.org/10.1038/srep06232ArticleCASPubMedPubMed CentralGoogle Scholar
  121. Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, Kapogiannis D (2015) Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85(1):40–47. https://doi.org/10.1212/wnl.0000000000001702ArticleCASPubMedPubMed CentralGoogle Scholar
  122. Muller L, Hong CS, Stolz DB, Watkins SC, Whiteside TL (2014) Isolation of biologically-active exosomes from human plasma. J Immunol Methods 411:55–65. https://doi.org/10.1016/j.jim.2014.06.007ArticleCASPubMedPubMed CentralGoogle Scholar
  123. Welton JL, Webber JP, Botos LA, Jones M, Clayton A (2015) Ready-made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles 4:27269. https://doi.org/10.3402/jev.v4.27269ArticlePubMedGoogle Scholar
  124. Boing AN, van der Pol E, Grootemaat AE, Coumans FA, Sturk A, Nieuwland R (2014) Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 3. https://doi.org/10.3402/jev.v3.23430
  125. Jackson CE, Scruggs BS, Schaffer JE, Hanson PI (2017) Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys J 113(6):1342–1352. https://doi.org/10.1016/j.bpj.2017.05.032ArticleCASPubMedPubMed CentralGoogle Scholar
  126. Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, Star RA (2007) Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 292(5):F1657–F1661. https://doi.org/10.1152/ajprenal.00434.2006ArticleCASPubMedGoogle Scholar
  127. Merchant ML, Powell DW, Wilkey DW, Cummins TD, Deegens JK, Rood IM, McAfee KJ, Fleischer C, Klein E, Klein JB (2010) Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl 4(1):84–96. https://doi.org/10.1002/prca.200800093ArticleCASPubMedGoogle Scholar
  128. Grant R, Ansa-Addo E, Stratton D, Antwi-Baffour S, Jorfi S, Kholia S, Krige L, Lange S, Inal J (2011) A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma. J Immunol Methods 371(1–2):143–151. https://doi.org/10.1016/j.jim.2011.06.024ArticleCASPubMedGoogle Scholar
  129. He L, Zhu D, Wang J, Wu X (2019) A highly efficient method for isolating urinary exosomes. Int J Mol Med 43(1):83–90. https://doi.org/10.3892/ijmm.2018.3944ArticleCASPubMedGoogle Scholar

Acknowledgments

This work was funded by NHMRC project grants (#1057741 and #1139489; D.W.G.), Helen Amelia Hains Fellowship (D.W.G.), Australian Government Research Training Program Scholarship (M.F., B.C.), BrightSparks Scholarship (B.C.), and La Trobe University-Baker Institute Postgraduate Scholarship (Q.P.).